Product Details
Place of Origin: Sichuan, China
Brand Name: XINHENG
Certification: IATF16949,ISO9001
Model Number: W5135
Payment & Shipping Terms
Minimum Order Quantity: 1000pcs
Price: Negotiation
Packaging Details: Carton+pallet
Delivery Time: 10-15days
Payment Terms: T/T, L/C, D/P, T/T, Western Union, MoneyGram
Supply Ability: 10000 ton per year
Product Name: |
Permanent Magnet Ferrite |
Application: |
Universal Motor |
Shape: |
Arc,Tile |
Type: |
Sintered Magnet |
Composite: |
Ferrite Strontium Powder |
Size: |
(R45.45mm-r26.02mm)×29.0mm |
Processing: |
Wet Molding |
Coating: |
No Coating |
Package Size: |
340mm×255mm×75mm |
Quantity Per Carton: |
375pcs |
Product Name: |
Permanent Magnet Ferrite |
Application: |
Universal Motor |
Shape: |
Arc,Tile |
Type: |
Sintered Magnet |
Composite: |
Ferrite Strontium Powder |
Size: |
(R45.45mm-r26.02mm)×29.0mm |
Processing: |
Wet Molding |
Coating: |
No Coating |
Package Size: |
340mm×255mm×75mm |
Quantity Per Carton: |
375pcs |
What does Xinheng offer to customers?
Our company manufactures an-isotropic ceramic strontium ferrite magnet made by means of wet compression molding.
Introduction Of Universal Motor:
General-purpose motors use magnetic fields to generate torque, which converts electrical energy into mechanical energy. Permanent Magnet Ferriteare mainly used to create magnetic fields in general motors, which are divided into stator magnets and rotor magnets.
Stator magnets are usually made of permanent magnets or electromagnets and are fixed to the stator of the motor. They generate a stable magnetic field that interacts with the conductors on the rotor, creating a torque of rotation that drives the motor to turn.
The rotor Permanent Magnet Ferriteis fixed on the rotor of the motor and interacts with the stator magnetic field, so that the rotor rotates under the action of electric power. The arrangement of rotor magnets and the adjustment of magnetic field strength can affect the output power, efficiency and operation characteristics of the motor.
What's the feature of ceramic strontium ferrite magnet made by wet compression molding?
Composition - Contain strontium ferrite (SrFe12O19) as the primary magnetic material. Strontium ferrite has good magnetic properties and is inexpensive to produce.
Density - Have a high relative density of around 95% or more after sintering. This gives good mechanical strength.
An-isotropy - Exhibit strong magnetocrystalline an-isotropy due to their hexagonal crystal structure. This results in a preferred direction of magnetization along one axis.
Particle shape - The strontium ferrite powder used typically has a hexagonal platelet morphology which helps promote magnetic an-isotropy during molding and sintering.
Molding method - The powder is mixed with a liquid binder and compression molded into a dense green compact using high pressures. This orients the an-isotropic particles.
Firing process - The compact is then sintered at high temperature to develop density while preserving the induced magnetic anisotropy orientation from molding.
Remanence - Have a maximum magnetic flux density or remanence along the axis of anisotropy, but little/no remanence perpendicular to it.
Coercivity - Usually have medium to high coercivity depending on additives, density, and anisotropy level achieved.
What's the key advantages of ceramic strontium ferrite magnets made by wet compression molding?
Low cost - Strontium ferrite is inexpensive and the wet molding process is relatively simple. This makes them cheaper than rare-earth magnets.
High magnetic property-Even without heavy rare earth element additions, strontium ferrite magnets can achieve coercivities of 700-1000 kA/m, making them suitable for many applications.
Dimensional consistency - The compression molding process allows for close dimensional tolerances and uniform magnet shapes to be produced consistently.
Temperature stability - Strontium ferrite magnets have high Curie temperatures, typically around 450-470°C. They maintain good magnetic properties over a wide operating temperature range.
Resistance to corrosion - Being fully dense ceramic materials, they are not prone to corrosion like bonded magnets containing additives.
Mass production capability - The molding process is amenable to automated high-volume manufacturing of complex magnet geometries.
PHYSICAL PROPERTIES OF SINTERED FERRITE MAGNETS
Units | Sintered Ferrite (Ceramic) | |
Curie Temperature | ºC | 450 |
Maximum Operating Temperature | ºC | 350 |
Hardness | Hv | >530 |
Density | g/cm3 | 4.8 – 5.0 |
Relative recoil permeability | μrec | 1.05-1.1 |
Temperature Coefficient Br | %/ºC | -0.18 |
Temperature Coefficient iHc | %/ºC | 0.11-0.40 |
Anti-Bending Strength | N/m2 | (0.5-0.9)×108 |
Anti-Compressive Strength | N/m2 | ≥6.9×108 |
Anti-Tensile Strength | N/m2 | (0.2-0.5)×108 |
Specific Heat | J/kg·K | 600-900 |
Resistivity | Q.cm | >104 |
What's the application of Xinheng's permanent ferrite magnets?
Xinheng mainly manufactures the following types of ceramic arc segment magnets:
How Xinheng fabricates its permanent strontium ferrite magnet?
FERRITE POWDER GRADE OF UNIVERSAL MOTORS MAGNET
Grade | Br(mT) | Hcb(KA/m) | Hcj(KA/m) | (BH)max(KJ/m3) | ||||
mT | Gs | KA/m | Oe | KA/m | Oe | KJ/m3 | MGOe | |
Y30H-1 | 380-400 | 3800-4000 | 230-275 | 2890-3460 | 235-290 | 2950-3640 | 27.0-32.5 | 3.4-4.1 |
Y33 | 410-430 | 4100-4300 | 220-250 | 2760-3140 | 225-255 | 2830-3200 | 31.5-35.0 | 3.9-4.4 |
Y33H | 410-430 | 4100-4300 | 250-270 | 3140-3390 | 250-275 | 3140-3450 | 31.5-35.0 | 3.9-4.4 |
Y35 | 430-450 | 4300-4500 | 215-239 | 2700-3000 | 217-241 | 2730-3030 | 33.1-38.2 | 4.1-4.8 |
To know more about Xinheng Permanent Ferrite Magnet